【中3数学】2学期中間テスト対策予想問題

中3数2学期中間テストアイキャッチ 中3数学
スポンサーリンク

【中3数学】2学期中間テスト対策予想問題です。主な単元は、小問集合(中1~中3のこれまでの履修内容)、平方根、二次方程式、二次関数がメインとなっています。

スポンサーリンク

2学期中間テスト対策予想問題(中3数学)

【問1】次の問いに答えなさい。
(1)100の平方根を答えなさい。

(2)二次方程式ax2+bx+c=0の解答の公式を答えよ。

(3)xとyの関係が(   )<aは定数>で表すとき、yはxの2乗に比例するという。(  )にあてはまる式を答えなさい。

(4)関数y=2x2のグラフは、(   )を対称の軸として(   )である。(  )にあてはまる語句をそれぞれ答えなさい。

(5)a=5,b=-4のとき、-3a+b2の値はを求めなさい。

(6)等式a+2b=17をbについて解きなさい。

(7)一次方程式9x+13=2(x-4)を解きなさい。

(8)連立方程式
x-2y=4
4x+3y=5を解きなさい。

(9)yはxに反比例し、x=4のとき、y=-6である。x=-3のときのyの値を求めなさい。

(10)5本のうち1本のあたりくじが入っているくじがある。このくじを同時に2本をひくとき、あたりくじがふくまれる確率を求めなさい。

【問2】次の方程式を解きなさい。
(1)x2=16

(2)-5x2=-40

(3)(x-1)2=7

(4)x2=7x

(5)x2-6x-16=0

(6)x2+3x-28=0

(7)2x+35=x2

(8)4x2-9x+2=0

(9)(x-1)(x-5)=2

【問3】次の各問に答えなさい。
(1)x=√6+2、y=√6-2のときx2-y2の値を求めなさい。

(2)√10の整数部分をa、小数部分をbとするとき、a+b(b+6)の値を求めなさい。

(3)次の数の中から最も大きい数を選び、ア~エの記号で答えなさい。
数の大小

(4)√19-3nの整数となるような正の整数nの値をすべて求めなさい。

(5)二次方程式x2-6x+a=0の解の1つが2であるとき、もう1つの解を求めなさい。

(6)二次方程式x(x-a)+12=0の2つの解がともに正の整数になるとき、aの値をすべて求めなさい。

【問4】次の問いに答えなさい。
(1) xについての2次方程式x2-8x+a=0の解の1つがx=3のとき,aの値を求めなさい。また,もう1つの解を求めなさい。
(2) xについての2次方程式x2+ax-8=0の解の1つがx=8のとき,aの値を求めなさい。また,もう1つの解を求めなさい。
(3) xについての2次方程式x2+ax+b=0の解がx=1, 7のとき,a, bの値を求めなさい。
(4) xについての2次方程式x2+ax+b=0の解がx=-2, -4のとき,a, bの値を求めなさい。

【問5】次の問いに答えなさい。
(1)2つの自然数があり、2数の差は7である。この2数の積が78のとき、大きい方の数を求めなさい。

(2)連続する3つの自然数がある。最大の数の2乗は、他の数をそれぞれ2乗したものの和に等しい。この3つの自然数を求めなさい。

(3)横が縦より5cm長い長方形の厚紙があります。この厚紙の4すみから、1辺3cmの正方形を切り取って、ふたのない箱をつくったところ、その容積が108cm3になりました。もとの厚紙の縦の長さを求めなさい。

(4)横が縦より5cm長い長方形の紙があります。この紙の4すみから1辺が4cmの正方形を切り取り、直方体の容器をつくったところ、容積144cm3になりました。もとの長方形の縦の長さを求めなさい。

(5)幅16cmの鉄板を左右同じ長さだけ折り曲げ、切り口の長方形の面積を30cm2にします。鉄板を左右何cmずつ折り曲げればよいですか。

(6)差が5で、積が84になる2つの正の数を求めよ。

【問6】次のア~オの関数について、あとの問いに記号で答えなさい。
二次関数の式特徴問題
(1)グラフが上に開いているものはどれか。
(2)グラフがx軸について対称であるものはどれとどれか。
(3)グラフの開き方がもっとも小さいものはどれですか。

【問7】図のようなAB=BC=12cmの直角三角形ABCで、点PはAを出発して辺AB上をBまで動く。また、点Qは、点PがAを出発するのと同時にBを出発し、点Pと同じ速さで辺BC上をCまで動く。
二次方程式点の移動
(1)点PがAからxcm動いたとき、PB,BQの長さをxを使って表しなさい。
(2)点PがAから何cm動いたとき、△PBQの面積が16cm2になるか求めなさい。

【問8】次の図は、関数y=-x+6のグラフで、このグラフとx軸との交点をAとする。点Pは、x軸上を原点OからAまで毎秒1cmの速さで動く。点Qは関数y=-x+6のグラフ上の点で、つねに、線分PQがy軸に平行になるように動く。△QPAの面積が8のとき、点Qの座標を求めなさい。
二次方程式と関数

2学期中間テスト対策予想問題(中3数学)の解答

【問1】
(1)±10
(2)x=-b±√b2-4ac/2a
(3)y=ax2
(4)y軸、線対称
(5)1
(6)b=(17-a)/2
(7)x=-3
(8)x=2,y=-1
(9)8
(10)2/5

【問2】
(1)x=±4
(2)x=±2√2
(3)x=1±√7
(4)x=0,7
(5)x=-2,8
(6)x=-7,4
(7)x=-5,7
(8)x=2,1/4
(9)x=3±√6

【問3】
(1)8√6
(2)a=3 b=√10-3
(3)ア
(4)1,5,6
(5)4
(6)a=7,8,13

【問4】
(1)a=15 もう1つの解x=5
(2)a=-7 もう1つの解x=-1
(3)a=8,b=7
(4)a=6,b=8

■ aの値と他方の解(もう1つの解)を求める
xについての2次方程式x2-12x+a=0の解の1つがx=4のとき、aの値と、もう1つの解を求めなさい。解法

  1. x2-12x+a=0の式に与えられたx=4を代入して、a=32を求める。
  2. 次に、a=32をx2-12x+a=0の式にして、その2次方程式を解く。
  3. x=4,8となるので、もう1つの解は8

■ 解が与えられて、a,bの値を求める
xについての2次方程式x2-ax+b=0の解が、x=1,3のとき、a,bの値を求めよ。

解法1

  1. 2次方程式x2-ax+b=0にそれぞれ、x=1,3を代入して、その出来た方程式を連立方程式で解く。
  2. a=-4,b=3

解法2

  1. x=1,3が解なので、その逆算して、(x-1)(x-3)=0を解いたことになるので、それを展開する。
  2. x2-4x+3=0となり、a=-4,b=3

【問5】
(1)13
(2)3,4,5

(3)縦の長さをxcmとすると、横の長さは(x+5)cm である。4すみから3cmずつ切り取るので、箱の縦横はそれぞれ6cm短くなる。

3(x-60)(x-1)=108
(x-6)(x-1)=36
x2-7x-30 = 0
(x+3)(x-10)=0
よって、x=-3, 10
x>6であるから、x=10は問題にあっているが、
x=-3はあわない。
よって、x=10

(4)縦の長さをxcmとすると、横の長さは(x+5)cm である。4すみから4cmずつ切り取るので、箱の高さは4cm、縦は(x-8)cm、横x+5-8=(x-3)cm となる。
4(x-8)(x-3)=144
(x-8)(x-3)=36
x2-11x-12=0
(x+1)(x-12)=0
x+1=0, x-12=0
よって、x=-1, 12
x>8であるから、
x=12 は問題にあっているが、
x=-1はあわない。
よって、x=12

(5)縦の長さをxcmとすると、横の長さは(16-2x)cm になる。
x(16-2x)=30
16x-2x2=30
x2-8x-15=0
(x-3)(x-5)=0
よって、
x=3,5
0<x<8であるから、これらは問題にあっている。

(6)小さい方の数をxとすると、大きい方の数はx+5だから、方程式は、x(x+3)=84
これを解くと、x=7, -12。
xは正の数だから、x=7。
大きい方の数は、7+5=12
7と12

【問6】
(1)ア、ウ
(2)ウとエ
(3)イ

【問7】
(1)PB=12-x BQ=x
(2)4cm,8cm

【問8】
Q(2,4)

コメント

テキストのコピーはできません。